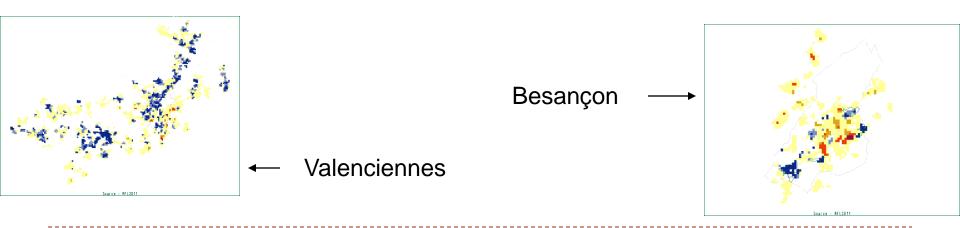
Colloque Théoquant 2015

La ségrégation socio-spatiale dans les grandes agglomérations Une mesure basée sur les revenus

Jean-Michel Floch

Insee -Département de l'action régionale


Plan

Introduction

- Les indicateurs classiques et leurs limites
- Les indicateurs de ségrégation hiérarchisés
- Application aux agglomérations françaises
- Ségrégation des riches, ségrégation des pauvres
- Inégalité de revenus et ségrégation
- De la ville au quartier

L'objet de cette présentation

- Présenter une méthode et quelques résultats sur la ségrégation socio-spatiale dans les principales agglomérations de France métropolitaine
- L'optique adoptée ici n'est pas de présenter les gradients de situation au sein des agglomérations mais de comparer ces agglomérations

L'utilisation des revenus fiscaux

- Les travaux menés lors de la refonte des quartiers de la politique de la ville ont montré que le revenu était la variable la plus synthétique de la précarité sociale
 - > Des données annuelles
 - Quasi-exhaustives
 - > Complètement localisées
 - Continues (on verra plus loin l'intérêt)
- Une rupture de fait avec une tradition d'utilisation des PCS dans la mesure de la ségrégation (de Tabard 1993 à Charlot & alli 2004)
 - De bons arguments : une partition de la population qui s'appuie sur des références aux sciences sociale
 - Des limites
 - > Des frontières plus floues
 - Limites du Recensement de la population (frontière des 10000 h)
 - > Echantillon, empilement des collectes

Les méthodes élaborées par Reardon

- Méthodes visant à prendre en compte l'autocorrélation spatiale (Reardon & O'Sullivan 2004 – Measures of spatial segregation)
- Méthodes de construction d'indicateurs de ségrégation hiérarchisés particulièrement adaptés à l'utilisation des revenus
 - Une série de working papers de Reardon (notamment celui de 2009 _ Measures of ordinal segregation) associé à divers corédacteurs, débouchant sur l'article de 2011 dans American review of sociology Income inequality and income segregation)

Plan

- Introduction
- Les indicateurs classiques et leurs limites
- Les indicateurs de ségrégation hiérarchisés
- Application aux agglomérations françaises
- Inégalité de revenus et ségrégation
- De la ville au quartier

Galaxie des indicateurs (Massey & Denton 1988)

- Présentés dans le cadre de la mesure de la ségrégation ethnique
- Indicateurs d'inégalité
 - Duncan & Duncan
 - Entropie (Theil et Finezza)
- Indicateurs d'exposition/isolement
 - « Risque » de rencontrer des individus d'autres groupes ou de ne rencontrer que des individus de son groupe
- Indicateurs de concentration spatiale
 - > Tendance à se concentrer
- Indicateurs d'agrégation
 - > Tendance à former des clusters
- Indicateurs de centralité
 - Proximité au centre des affaires (CBD dans la littérature)
- Un résumé complet dans Apparicio (2005)

L'indicateur de Theil-Fenizza (1971) fondé sur l'entropie

Maille élémentaire (carreau de 200m)

$$E_i = -(p_i \log_2(p_i) + (1 - p_i) \log_2(1 - p_i))$$

$$E = -(P \log_2(P) + (1 - P) \log_2(1 - P))$$

Agglomération

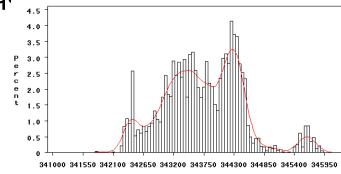
$$H = \sum_{i=1}^{n} \frac{t_i(E - E_i)}{ET} \leftarrow ---$$

Moyenne pondérée des différences entre entropie locale et entropie globale normée par l'entropie globale

0<H<1

Première difficulté, d'ordre technique

- Elle est appréhendée par Reardon & O'Sullivan dans leur article de 2004
- Elle provient de difficultés classiques (Autocorrélation spatiale, maup, checkerboard problem)
- La solution proposée par Reardon & O'Sullivan (2004) est assez simple : remplacer la valeur observée par une valeur estimée dans un voisinage (suppression des aléas locaux pour ne conserver que les grandes tendances)


$$\hat{E}_i(s) = -(\hat{p}_i(s) \log_2(\hat{p}_i(s))) + (1 - \hat{p}_i(s)) \log_2(1 - \hat{p}_i(s))$$

La mise en œuvre dans le cadre de la statistique spatiale

A partir de la position des individus dans l'espace, la densité estimée par des estimateurs non paramétrique

Avec:
$$f^{X}(s) = \frac{1}{N^{X}} \sum_{i=1}^{N^{X}} K_{H}(s - s_{i}^{X})$$

 $K_{H}(s) = \frac{1}{2\pi\sqrt{Det(H)}} \exp\left[-\frac{s^{T}H^{-1}s}{2}\right]$

$$\int_{R^2} K_H(s) ds = 1 \quad \int_{R^2} f^X(s) ds = 1 \quad et \quad f^X$$

est une densité de probabilité

La proportion estimée est : $p^{X/T}(s) = \frac{f^X(s)}{f^T(s)} \frac{N^X}{N^T}$

Toutes les proportions utilisées ultérieurement sont calculées de cette façon

Deuxième difficulté : l'invariance par permutation

Extension des indicateurs à des variables polytomiques (Apparicio 2005) $H = \frac{1}{TE} \sum_{k=1}^{K} \sum_{i=1}^{n} t_i \ p_{ik} \ln \left(\frac{p_{ik}}{p_k} \right)$

- Un problème : quid du passage de l'égalité des indicateurs à l'égalité des situations « réelles »
 - \rightarrow (1/4,1/2,1/4)= (1/2,1/4,1/4)= (1/4,1/4,1/2)
 - Donne le même résultat avec l'indicateur de Theil (invariance par permutation)

Plan

- Introduction
- Les indicateurs classiques
- Les indicateurs de ségrégation hiérarchisés
- Application aux agglomérations françaises
- Inégalité de revenus et ségrégation
- De la ville au quartier

Des variables dichotomiques aux variables continues

- > Comment pallier à l'invariance par permutation :
 - Une solution dans le cas des variables polytomiques : on retreint la population, et on se limite à la ségrégation ouvriers/cadres
 - > Dans le cas des variables continues, on est amené à définir des groupes de manières conventionnelle (riches/pauvres)
- Dans les deux cas, où on ne se base que sur les situations extrêmes, on perd l'information apportée par les situations intermédiaires

D'où l'idée des indicateurs hiérarchisés

Pour pallier à ces difficultés Reardon a proposé dans plusieurs papiers, cosignés avec divers auteurs et publiés de 2006 à 2012 les « rank ordered segregation indexes », construits pour mesurer la ségrégation par le revenu (income segregation)

Le principe général :

- Utiliser tout l'éventail des revenus
- > Partitionner la population selon une suite croissante de revenus
- Calculer des indicateurs dichotomiques : populations aux revenus inférieurs à y_k vs populations aux revenus supérieurs à y_k
- Agréger (de façon astucieuse, et judicieuse..) ces indicateurs pour en faire un indicateur global

Résumé (très) simplifié de la technique (1)

On ne présente que le cas particulier utilisant les indices de Theil-Finizza. Reardon présente deux autres indicateurs.

- > On définit une suite de revenus (y_k) , dont on déduit une suite de proportion (p_k) $p_k = F(y_k) = \frac{1}{n} \sum_{i=1}^n 1_{v_i < v_k}$
- On calcule pour chaque valeur de p_k

$$H^{k} = \sum_{i=1}^{n} \frac{t_{i}(E_{k} - E_{ik})}{E_{k}T}$$

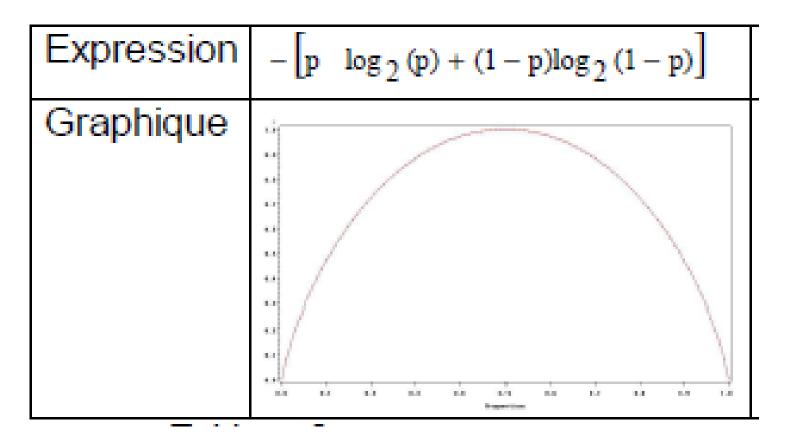
$$E_{ik} = -(p_{ik} \log_{2}(p_{ik}) + (1 - p_{ik}) \log_{2}(1 - p_{ik}))$$

$$E = -(P_{k} \log_{2}(P_{k}) + (1 - P_{k}) \log_{2}(1 - P_{k}))$$

Résumé (très) simplifié de la technique (2)

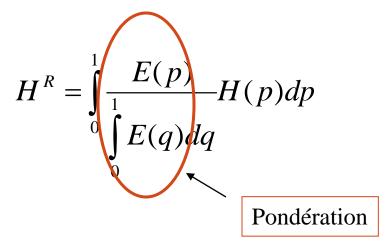
L'indicateur général est construit une moyenne pondérée des indicateurs dichotomiques partiels

$$H^R = \sum_{k=1}^{K-1} w_k H_k$$


- D'où la question de la détermination des pondérations w_k, qui doivent être en lien avec les p_k
- C'est la partie la plus technique de l'article de Reardon (renvoi aux propriétés des indicateurs de type ordinaux)

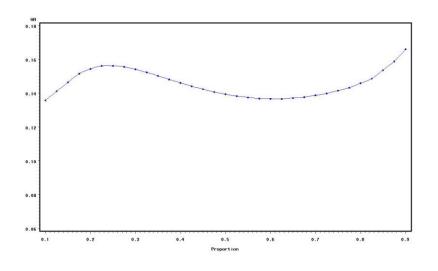
Résumé (très) simplifié de la technique (3)

- De la suite des p_k à une forme fonctionnelle ayant de bonnes propriétés pour les w_k
- > La justification qu'en donne Reardon est la suivante:
 - ➤ Si la moitié de la population a le revenu minimum et l'autre le revenu maximum, la ségrégation est maximale. La suite des p_k est alors de la forme (1/2,1/2,....,1/2)
 - ➤ Quand tous les revenus sont identiques, la ségrégation est minimale on a des suites de la forme(0,...,0,1,...1)
- ➤ D'où la recherche d'une forme fonctionnelle ayant un maximum en ½, et s'annulant en 0 et 1

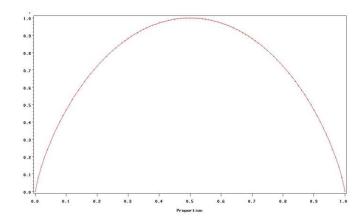

Résumé (très) simplifié de la technique (4)

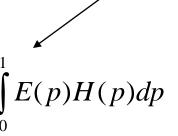
La fonction d'entropie présente ces caractéristiques (cf. Reardon 2009)

Résumé (très) simplifié de la technique (5)


Les indicateurs s'écriront de façon générale, avec un abus de notation lié au caractère continu des revenus:

 Pour les détails de la méthode cf. S.Reardon – Measures of income segregation –Working paper de l'Université de Stanford 2009)


Le résultat final (pour l'entropie)

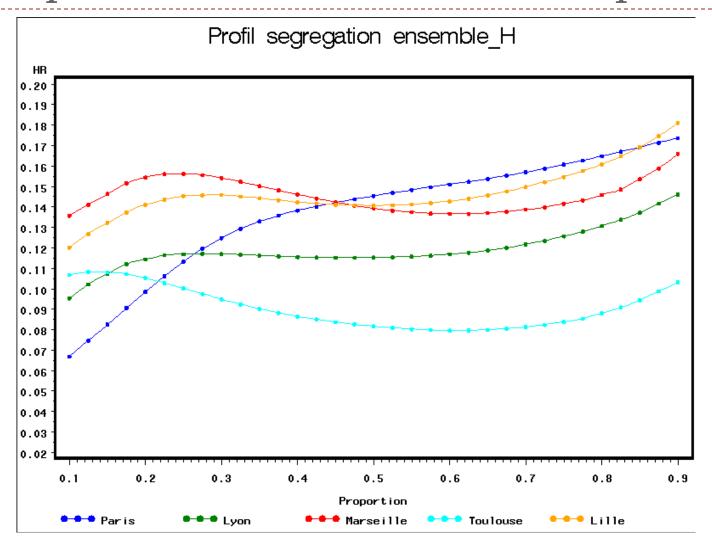

« Profil » $H(p_k)$

$$H^{R} = \int_{0}^{1} \frac{E(p)}{\int_{0}^{1} E(q)dq} H(p)dp = 2\ln(2)\int_{0}^{1} E(p)H(p)dp$$

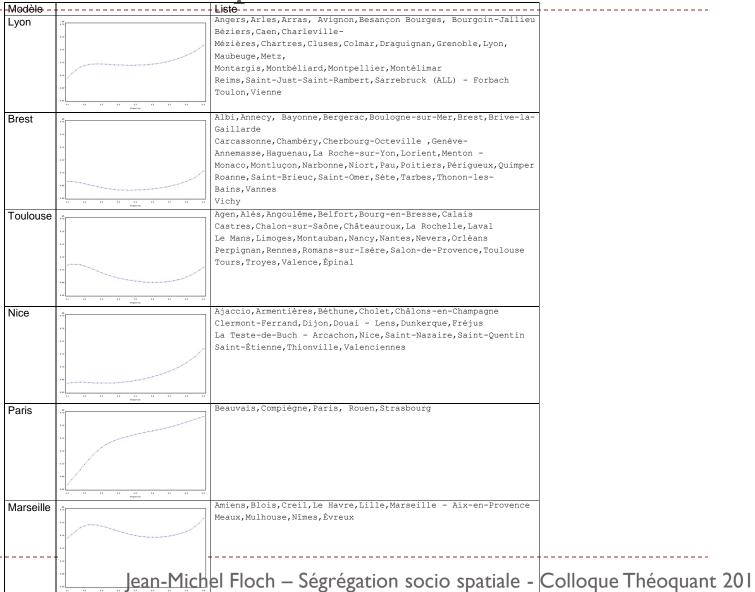
Système de poids

Plan

- Introduction
- Les indicateurs classiques et leurs limites
- Les indicateurs de ségrégation hiérarchisés
- Application aux agglomérations françaises
- Inégalité de revenus et ségrégation
- De la ville au quartier


Le cadre

- ➤ Les unités urbaines de plus de 50 000 habitants (118)
- ➤ Une maille carroyée de 200 m
- > Des proportions lissées
- Utilisation des revenus fiscaux (2011) par unités de consommation (le ménage fiscal est l'observation de base)


Quelques résultats d'ensemble : classement

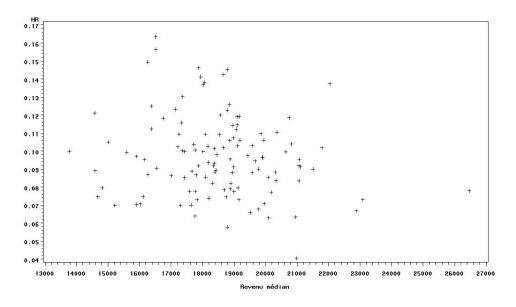
Les plus ségrégées			Les moins ségrégées		
Unité urbaine	Tranche	HR	Unité urbaine	Tranche	HR
Creil	6	0,163	Carcassonne	5	0,075
Évreux	5	0,156	Ajaccio	5	0,075
Nîmes	6	0,149	Vichy	5	0,074
Lille	7	0,146	Saint-Brieuc	5	0,073
Marseille - Aix-en-Provence	7	0,145	Roanne	5	0,073
Blois	5	0,143	Thonon-les-Bains	5	0,073
Meaux	5	0,141	Niort	5	0,071
Mulhouse	7	0,138	Narbonne	5	0,071
Paris	8	0,137	Saint-Omer	5	0,070
Le Havre	7	0,137	Bastia	5	0,070
Amiens	6	0,130	Saint-Quentin	5	0,070
Rouen	7	0,126	Sète	5	0,070
Charleville-Mézières	5	0,125	Haguenau	5	0,068
Montargis	5	0,123	Annecy	6	0,067
Strasbourg	7	0,123	Quimper	5	0,066
Béziers	5	0,121	Tarbes	5	0,064
Besançon	6	0,120	La Teste-de-Buch - Arcachon	5	0,063
Compiègne	5	0,119	Bayonne	7	0,063
Montpellier	7	0,119	La Roche-sur-Yon	5	0,058
Lyon	7	0,119	Menton - Monaco	5	0,041

Quelques résultats d'ensemble : profils

Classification des profils

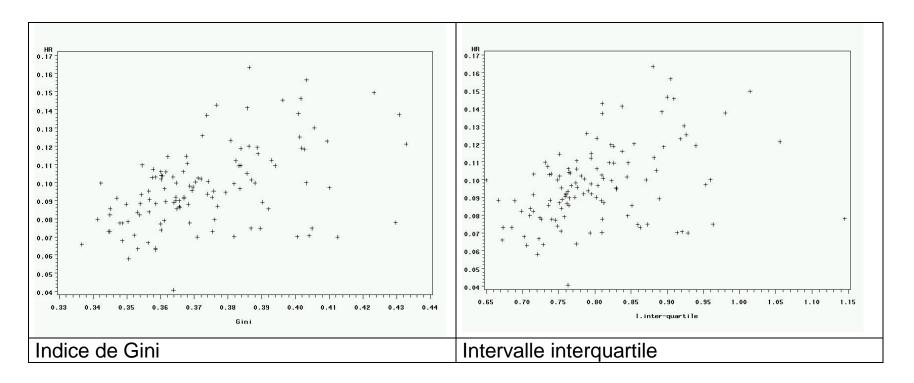
Ségrégation des riches et des pau

/	A		•				4	/
	P						l	2
,	6.2	4.3	9.4	4.5	+.5	4.7	*.*	

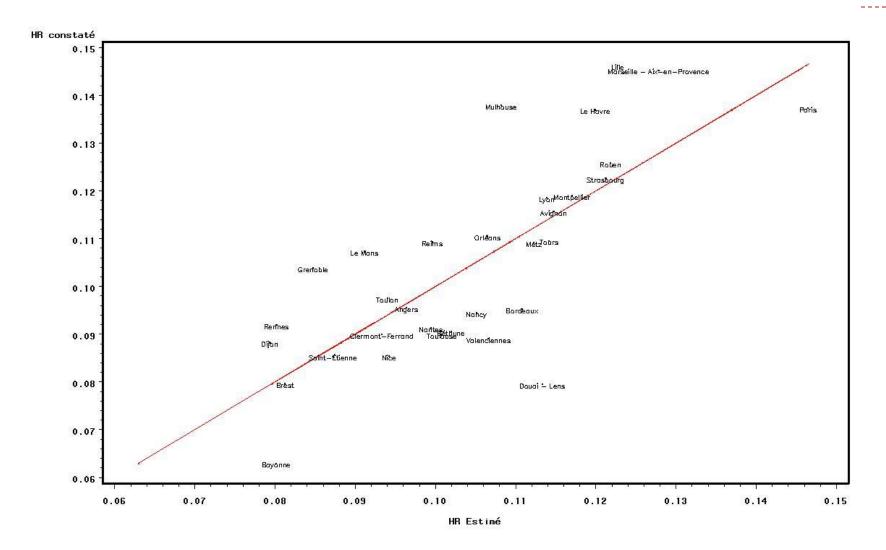

Pauvres	Riches	Riches/pauvres	HR
Blois	Rouen	Creil	Creil
Évreux	Lille	Le Havre	Évreux
Creil	Creil	Meaux	Nîmes
Nîmes	Le Havre	Lille	Lille
Marseille - Aix-en-Provence	Paris	Rouen	Marseille - Aix-en-Provence
Mulhouse	Compiègne	Blois	Blois
Meaux	Marseille - Aix-en-Provence	Évreux	Meaux
Lille	Amiens	Bourgoin-Jallieu	Mulhouse
Besançon	Nîmes	Marseille - Aix-en-Provence	Paris
Le Havre	Sarrebruck (ALL) - Forbach	Mulhouse	Le Havre
Montpellier	Dunkerque	Vienne	Amiens
Montargis	Meaux	Compiègne	Rouen
Béziers	Beauvais	Beauvais	Charleville-Mézières
Bourges	Évreux	Nîmes	Montargis
Amiens	Mulhouse (Tours	Strasbourg
Orléans	Arles	Amiens	Béziers
Limoges	Valenciennes	Saint-Just-Saint-Rambert	Besançon
Charleville-Mézières	Vienne	Montargis	Compiègne
Châteauroux	Fréjus	Charleville-Mézières	Montpellier
Avignon	Lyon	Lyon	Lyon

Plan

- Introduction
- Les indicateurs classiques et leurs limites
- Les indicateurs de ségrégation hiérarchisés
- Application aux agglomérations françaises
- Inégalité de revenus et ségrégation
- De la ville au quartier


Pas de lien entre revenu et niveau de ségrégation

Pas de corrélation significative au sens des rangs, un nuage de points sans direction significative


A priori, ce n'est pas très étonnant : si les revenus sont homogènes, quel que soit le niveau, la ségrégation tend à diminuer

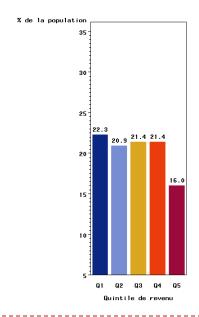
Un lien significatif avec les indicateurs de dispersion et de concentration

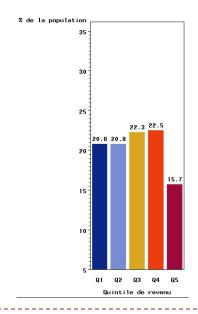
	Gini	Intervalle interquartile	Intervalle interdécile
Indicateur H	0.473	0.435	0.369

Graphique des résultats du modèle

Ségrégation	Unités urbaines			
Beaucoup plus élevée qu'attendue	Marseille - Aix-en-Provence ,Évreux,Nîmes ,Grenoble, Blois , Saint-Just-Saint-Rambert ,Laval ,Armentières, Lille ,Creil ,Colmar, Mulhouse ,Le Mans ,Le Havre ,Amiens , Castres			
Plus élevée qu'attendue	Montélimar, Brive-la-Gaillarde, Charleville-Mézières, Salon-de-Provence, Bourges, Dijon, Besançon, Chartres, Quimper, Rennes, Saint-Nazaire, Reims, Lorient, Nevers, Beauvais			
Plus faible qu'attendue	Arles, Béthune, Paris, Nice, La Rochelle, Toulouse, Nantes, Cherbourg-Octeville, Nancy, Thionville, Pau, Perpignan, Montauban, La Roche-sur-Yon			
Beaucoup plus faible qu'attendue	Bayonne ,Douai - Lens,Saint-Quentin ,Vichy , Carcassonne ,Bastia ,Alès , Bordeaux ,Sète ,Châlons- en-Champagne ,Valenciennes ,Saint-Omer ,Boulogne- sur-Mer , Tarbes, Chalon-sur-Saône ,Thonon-les-Bains ,Poitiers			

Plan


- > Introduction
- > Les indicateurs classiques et leurs limites
- Les indicateurs de ségrégation hiérarchisés
- > Application aux agglomérations françaises
- > Ségrégation des riches, ségrégation des pauvres
- > Inégalité de revenus et ségrégation
- > De la ville au quartier


Une vision plus locale de la ségrégation

- Poursuite de travaux réalisés pour le rapport 2012 de l'ONZUS fournissant une cartographie de la ségrégation dans une optique nationale
- Simplification de la typologie, construite à partir des quintiles de revenus
- Essai plus fondé de caractériser les zones mixtes, en mesurant l'écart à une situation moyenne (par une distance de type khi-2)

Besançon et Poitiers(1)

- > Deux villes aux profils d'ensemble proches
- > Des niveaux de ségrégation très différents
 - Besançon 0.112 (17°)
 - Poitiers 0.088 (78°)

Besançon et Poitiers(2) Comparaison des représentations locales

Perspectives

- Poursuivre l'analyse de la méthode, pour en apprécier le bien fondé (système de pondération)
- Reprise avec les données de FILOSOFI
- Surtout : analyse comparative de la ségrégation sociospatiale
 - Beaucoup de travaux font état d'un accroissement de la ségrégation dans l'agglomération parisienne

Document de travail

Pour plus de détails techniques
 et de résultats

Un article à paraître dans Données urbaines n°7

Direction de la Diffusion et de l'Action régionale

H 2013/02

La ségrégation spatiale dans les
grandes unités urbaines de
France métropolitaine
mesurée à l'aide des revenus

Gaëlle Dabet

Jean-Michel Floch

Document de travail

Institut National de la Statistique et des Études Économiques

Merci de votre attention